skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Hoorfar, Ahmad"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Wave-based analog computing in the forms of inversedesigned metastructures and the meshes of Mach−Zehnder interferometers (MZI) have recently received considerable attention due to their capability in emulating linear operators, performing vector-matrix multiplication, inverting matrices, and solving integral and differential equations via electromagnetic wave interaction and manipulation in such structures. Here, we combine these two platforms to propose a wave-based metadevice that can compute scattered fields in electromagnetic forward scattering problems. The proposed device consists of two subsystems: a set of reconfigurable couplers with a proper feedback system and an inverse-designed inhomogeneous material block. The first subsystem computes the magnitude and phase of the dipole polarization induced in the scatterers when illuminated with a given incident wave (matrix inversion). The second subsystem computes the magnitude and phase of the scattered fields at given detection points (vector-matrix multiplication). We discuss the functionality of this metadevice, and through several examples, we theoretically evaluate its performance by comparing the simulation results of this device with fullwave numerical simulations and numerically evaluated matrix inversion. We also highlight that since the first section is reconfigurable, the proposed device can be used for different permittivity distributions of the scatterer and incident excitations without changing the inverse-designed section. Our proposed device may provide a versatile platform for rapid computation in various scattering scenarios. 
    more » « less
  2. Abstract Highly integrated, flexible, and ultrathin wireless communication components are in significant demand due to the explosive growth of portable and wearable electronic devices in the fifth‐generation (5G) network era, but only conventional metals meet the requirements for emerging radio‐frequency (RF) devices so far. Here, it is reported on Ti3C2TxMXene microstrip transmission lines with low‐energy attenuation and patch antennas with high‐power radiation at frequencies from 5.6 to 16.4 GHz. The radiation efficiency of a 5.5 µm thick MXene patch antenna manufactured by spray‐coating from aqueous solution reaches 99% at 16.4 GHz, which is about the same as that of a standard 35 µm thick copper patch antenna at about 15% of its thickness and 7% of the copper weight. MXene outperforms all other materials evaluated for patch antennas to date. Moreover, it is demonstrated that an MXene patch antenna array with integrated feeding circuits on a conformal surface has comparable performance with that of a copper antenna array at 28 GHz, which is a target frequency in practical 5G applications. The versatility of MXene antennas in wide frequency ranges coupled with the flexibility, scalability, and ease of solution processing makes MXene promising for integrated RF components in various flexible electronic devices. 
    more » « less